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Correction du DM n◦4.
Exercice

Pour tout entier n supérieur ou égal à 1 , on définit la fonction fn par :

∀x ∈ R+, fn(x) = xn +9x2−4.

1. (a) On a : fn(0) = −4 et lim
x→+∞

fn(x) = +∞ fn est dérivable sur R+et f ′n(x) = nxn−1 +9x = x
(
nxn−1 +9

)
> 0. fn est

donc bijective de R+dans [−4,+∞[. Comme 0 ∈ [−4,+∞[, l’équation fn(x) = 0 a donc une unique solution dans
R+. On a donc un > 0 et fn (un) = 0.

(b) Pour calculer u1 et u2, il faut résoudre f1(x) = 0 et f2(x) = 0 : f1(x) = x+ 9x2− 4 polynôme du second dégré
de déterminant : ∆ = 1+ 4.4.9 = 145 donc u1 =

−1+
√

145
18 . .qui est la racine positive de cette équation. f2(x) =

x2 +9x2−4 = 10x2−4 = 10(x−
√

2/5)(x+
√

2/5) donc u2 =
√

2/5.

(c) On a fn(2/3) = (2/3)n +9(2/3)2−4 = (2/3)n > 0 et fn(0) =−4
Donc fn(0) < fn (un) < fn(2/3) et comme fn est strictement croissante sur R+et qu’ils en sont éléments, on a
0 6 un 6 2

3 . et donc ∀n ∈ N∗,un ∈]0, 2
3 [.

2. (a) Soit x ∈]0,1 [, on a : fn+1(x)− fn(x) = xn+1−xn = xn(x−1) et comme x < 1 et xn > 0 on a bien fn+1(x)< fn(x).

(b) Donc, comme un ∈]0, 2
3 [ , ona un ∈]0,1 [ et fn+1 (un+1) = 0 < fn (un+1).

Donc fn (un+1)> 0 = fn (un) et comme fn est strictement croissante sur R+ et que un et un+1 en sont éléments, on
a alors un+1 > un pour tout entier n et la suite u est croissante.

(c) u est croissante et majorée par 2
3 donc elle est convergente vers ` avec 0 6 `6 2

3 .

3. (a) Comme 0 6 un 6 2/3 et que la fonction puissance n est strictement coirssante pour n > 0 sur R+(sur R−celà
dépendrait de la parité de n ) alors 0n 6 (un)

n 6 (2/3)n et comme |2/3|< 1 on a (2/3)n→ 0 donc par encadrement
un→ 0

(b) Or un
n +9un

2−4 = 0 alors par passage à la limite,

Donc 9`2−4 = 0 et `= 2
3 car `> 0. Conclusion :

un →
n→+∞

`=
2
3
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Problème : une famille de matrices

1. On calcule A2 =

Ñ
0 −1 0
0 0 −1
1 0 0

é
et A3 = I3. On a donc pour tout entier n, A3n = (A3)n = I3 et ainsi Ak =®

I3 si k ≡ 0[3]
A si k ≡ 1[3]A2 si k ≡ 2[3]

Comme A3 = A2×A = A×A2 = I3, on a montré que A2 était l’inverse de A, i.e. A

est inversible et A−1 = A2

2. On a E =
{

M(a,b,c),(a,b,c) ∈ C3} =
{

aI3 +bA+ cA2,(a,b,c) ∈ C3}. Montrons que c’est un sous-anneau commu-
tatif de M3(C).

• E ⊆M3(C)
• En prenant a = 1 et b = c = 0 on remarque que I3 = M(1,0,0) ∈ E

• Soient A et B deux matrices de E, alors il existe (a,b,c) ∈ C3 et (a′,b′,c′) ∈ C3 tel que A = aI3 + bA+ cA2 et
B = a′I3 +b′A+ c′2. Ainsi A+B = (a+a′)I3 +(b+b′)A+(c+ c′)A2 = M(a+a′,b+b′,c+ c′) ∈ E
A×B = aa′I3 +ab′A+ac′A2 +ba′A+bb′A2 +bc′A3 +ca′A2 +cb′A3 +cc′A4 or A3 = I3 et A4 = A2 donc A×B =
(aa′+bc′+cb′)I3+(ab′+a′b+cc′)A+(ac′+bb′+ca′)A2 =M(aa′+bc′+cb′,ab′+a′b+cc′,ac′+bb′+ca′)∈E

• De plus on s’aperçoit que B×A = ac′+ bb′+ ca′ = M(a′a+ b′c+ c′b,a′b+ ab′+ c′c,a′c+ b′b+ c′a) = A×B
donc E est bien un sous anneau commutatif de M3(C). Note du rédacteur en chef pour ce qui est de la dimension
et d’une base, il vous était pour l’instant impossible de répondre à la question, mais (I,A,A2) en était une famille
libre et génératrice (donc une base) formée de 3 matrices : la dimension de E vu comme un C-espace vectoriel
était donc 3

3. (a) (A−λI)
(
A2 +λA+λ2I

)
= A3 +λA2 +λ2A−λA2−λ2A−λ3I = A3−λ3I = (1−λ3)I.

(b) En supposant que λ ∈U3 on a λ3 = 1 si bien que le calcul précédent nous donne

(A−λI)
(
A2 +λA+λ

2I
)
= O3

or A2 +λA+λ2I 6= O3 puisqu’il s’agit de la matrice M(λ2,λ,1) (3 de ses coefficients valent 1 donc il ne peut pas
s’agir de la matrice nulle). Ainsi, on a A−λI qui est un diviseur de O3, si elle était inversible, en multipliant par
son inverse l’égalité (A−λI)

(
A2 +λA+λ2I

)
= O3 on obtiendrait M(λ2,λ,1) = O3 ce qui est absurde : on peut

donc en conclure que A−λI n’est pas inversible lorsque λ ∈U3 = {1, j, j2}
(c) Lorsque λ /∈U3 on a λ3 6= 1 et donc

(A−λI)
(
A2 +λA+λ

2I
)
= (1−λ

3)I

avec 1−λ3 6= 0 ainsi

(A−λI)× 1
1−λ3

(
A2 +λA+λ

2I
)
= I

et le produit effectué dans l’autre sens donne le même résultat car les deux matrices commutent (ce sont toutes les
deux des éléments de E, un autre argument plus général était possible : toutes les deux des polynômes en A) donc
A−λI est inversible et son inverse vaut donc

A−1 =
1

1−λ3

(
A2 +λA+λ

2I
)

4. (a) Soit Y =

Ñ
a
b
c

é
, résolvons en l’inconnu X =

Ñ
x
y
z

é
∈M3,1(C) le système PX = Y :

PX = Y ⇔


x+ y+ z = a
−x− j2y− jz = b
x+ jy+ j2z = c

⇔
L2←−L2


x+ y+ z = a
x+ j2y+ jz =−b
x+ jy+ j2z = c
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on ne suit pas exactement la méthode du pivot de Gauss ici car on remarque la particularité suivante : chaque
inconnue apparaît en facteur d’un 1, d’un j ou d’un j2. Comme 1+ j + j2 = 0 en sommant les trois lignes on
trouve 3x = a−b+ c. En faisant L1 + jL2 + j2L3 on trouve 3y = a− jb+ j2c et enfin en faisant L1 + j2L2 + jL3
on trouve 3z = a− j2b+ jc. Finalement, on a

PX = Y ⇔


x = a−b+c

3

y = a− jb+ j2c
3

z = a− j2b+ jc
3

⇔ X =
1
3

Ñ
1 −1 1
1 − j j2

1 − j2 j

é
Y

On a donc prouvé que P est inversible et son inverse vaut

P−1 =
1
3

Ñ
1 −1 1
1 − j j2

1 − j2 j

é
(b) Soient A et B deux matrices de M3(C) alors

• φ(A+B) = P−1(A+B)P = P−1AP+P−1BP = φ(A)+φ(B)
• φ(A×B) = P−1ABP = P−1APP−1BP = φ(A)×φ(B)
• φ(I) = P−1IP = I

donc φ est un morphisme de l’anneau (M3(C),+,×)
Montrons que φ est bijectif : soit M ∈ M3(C) alors φ(B) = M ⇔ P−1BP = M ⇔ BP = PM en multipliant à
gauche par P puis équivaut à φ(B) = M⇔ B = PMP−1 en multipliant à droite par P−1. Ainsi, M admet un unique
antécédent par φ ce qui prouve que φ est bijectif, et φ−1(M) = B = PMP−1

(c) Plutôt que de vérifier que φ(A) = ∆ i.e. que P−1AP = ∆ on va plutôt vérifier que AP = P∆ car ceci est équivalent
(et ne nécessite pas de calculer l’inverse de P) On calcule les deux produits, et l’on trouve dans les deux casÑ

1 j j2

−1 −1 −1
1 j2 j

é
ce qui prouve bien que AP = P∆ et ainsi P−1AP = ∆ i.e. φ(A) = ∆ ce qu’il fallait prouver.

Comme φ est un morphisme d’anneau, on a Φ(A2) = Φ(A)2 = ∆2 = diag(1, j2, j)

(d) On a φ(M(a,b,c)) = φ(aI+bA+cA2)φ(aI)+φ(bA)+φ(cA2) puisque φ est un morphisme, et ainsi φ(M(a,b,c)) =
aI +bφ(A)+ cφ(A2) = aI +b∆+ c∆2 = diag(a+b+ c,a+ jb+ j2c,a+ j2b+ jc)

(e) Montrons que ψ :

®
E→D
A 7→ φ(A)

est un isomorphisme d’anneau. Premièrement, ceci est bien défini car comme il

l’a été prouvé à la question précédente, dès que A ∈ E son image par φ est bien une matrice diagonale. De plus,
c’est un morphisme en tant que restriction d’un morphisme de M3(C).
Montrons que ce morphisme est injectif en déterminant son noyau A∈ ker(ψ)⇔ (A ∈ E et φ(A) = O3)⇔ A = O3
car φ est injectif, ainsi ker(ψ) = {O3} ce qui prouve que ψ est injectif.
Prouvons à présent sa surjectivité. Soit D ∈D , alors ∃(α,β,γ) ∈C3 tel que D = diag(α,β,γ), et on cherche alors
si D admet un antécédent par ψ dans E.
Pour cela, on résout en l’inconnu (x,y,z) ∈C3 l’équation

ψ(M(a,b,c)) = D⇔


f (x,y,z) = α

g(x,y,z) = β

h(x,y,z) = γ

⇔


x +y +z = α

x + jy + j2z = β

x + j2y + jz = γ

comme on l’a vu à la question 4a, ce système admet une unique solution


a = α+β+γ

3

b = α+ j2β+ jγ
3

c = α+ jβ+ j2γ

3

ce qui signifie que

D admet un antécédent (unique d’ailleurs) et donc ψ est surjective : c’est donc un isomorphisme de l’anneau
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(E,+,×) vers (D,+,×)
Remarque oups, il semblerait encore que le rédacteur ait laissé le mot "sous-algèbre", il s’agit d’un anneau auquel
on peut rajouter une loi externe (la multiplication des matrices par des scalaires en l’occurence) mais on pouvait
répondre à cette question en en remplaçant par "anneau".

(f) Soit M ∈ E alors si M est inversible, on a MM−1 = I et en appliquant ψ on trouve ψ(M)ψ(M−1) = ψ(I) = I (idem
pour le produit dans l’autre sens) et donc ψ(M) est inversible. Réciproquement, si ψ(M) est inversible, le même
argument (en appliquant cette fois-ci ψ−1) permet de prouver que M est inversible ) on a donc

M est inversible⇔ ψ(M) est inversible⇔


a+b+ c 6= 0
a+ jb+ j2c 6= 0
a+ j2b+ jc 6= 0

Lorsque cela est vérifié, alors ψ(M)−1 = diag( 1
a+b+c ,

1
a+ jb+ j2c ,

1
a+ j2b+ jc) ∈ D et on a ψ(M)−1 = ψ(M−1) donc

M−1 = ψ−1(diag( 1
a+b+c ,

1
a+ jb+ j2c ,

1
a+ j2b+ jc)) ∈ E

5. (a) On effectue les calcul sÑ
1 0 0
0 j 0
0 0 j2

éÑ
a b c
d e f
g h i

é
=

Ñ
a b c
jd je j f
j2g j2h j2i

é
et

Ñ
a b c
d e f
g h i

éÑ
1 0 0
0 j 0
0 0 j2

é
=

Ñ
a jb j2c
d je j2 f
g jh j2i

é
ces deux matrices commutent donc si et seulement si

a = a
b = jb
c = j2c
jd = d
je = je
j f = j2 f
j2g = g
j2h = jh
j2i = j2i

donc si et seulement si la b = c = d = f = g = h = 0 i.e. si et seulement si la matrice est diagonale.

(b) Notons Comm(A) l’ensemble des matrices qui commutent avec A. Comme toutes les matrices de E sont des
polynômes en A et commutent donc avec A on a E ⊆Comm(A), il reste à prouver l’autre inclusion.
Soit B une matrice qui commute avec A i.e. AB = BA, alors en appliquant φ on trouve φ(A)φ(B) = φ(B)φ(A)
autrement dit φ(B) commute avec φ(A) qui vaut en fait ∆. D’après la question 5a), cela entraîne que φ(B) est di-
agonale, notons D = φ(B), comme φ est bijective on en déduit que B = φ−1(D) = ψ−1(D) cette matrice appartient
à E. Ainsi comm(A)⊆ E
Conclusion

comm(A) = E

6. (a) Soit (a,b,c) ∈C3 tel que M = M(a,b,c). Cherchons pour quels (x,y,z) ∈C3 on a M(x,y,z)2 = M = M(a,b,c) :
En appliquant ψ on a M(x,y,z)2 = M(a,b,c)⇔ φ(M(x,y,z)2) = φ(M(a,b,c))⇔ φ(M(x,y,z))2 = φ(M(a,b,c))
comme il s’agit de matrice diagonale cela équivaut donc à

f (x,y,z)2 = f (a,b,c)
g(x,y,z)2 = g(a,b,c)
h(x,y,z)2 = h(a,b,c)

Notons α,β et γ des racines carrées complexes de f (a,b,c) g(a,b,c) et h(a,b,c) :

il en existe et elles sont non nulles car on a supposé que M était inversible donc les 3 valeurs du membre de

droite sont non nulles. Ainsi


f (x,y,z)2 = f (a,b,c)
g(x,y,z)2 = g(a,b,c)
h(x,y,z)2 = h(a,b,c)

⇔


f (x,y,z) =±α

g(x,y,z) =±β

h(x,y,z) =±γ

On a donc X2 = M ⇔ φ(X) =

diag(±α,±β,±γ)⇔ X = Pdiag(±α,±β,±γ)P−1 Il y a 2× 2× 2 matrices (elles sont bien toutes deux à deux
distinctes par injectivité de φ−1)
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(b) Comme A ∈ E et est inversible, il y a déjà 8 matrices de E telles que X2 = A, mais il faut montrer qu’il n’y en a
pas d’autres.
Cela revient à prouver que X2 = A⇒ X ∈ E, ce que nous allons faire.
Soit X une matrice telle que X2 = A alors XA= XX2 = X2X vu que X commute avec ses puissances, or X2X = AX
donc finalement XA = AX i.e. X commute avec A. D’après la question 5b) on en déduit que X ∈ E.
Conclusion, les seules matrices X qui vérifient X2 =A sont les 8 solutions appartenant à E (fournies par la question
6a))
Si l’on souhaite les exprimer : on a A = M(0,1,0) est inversible et donc pour toute matrice X = M(x,y,z) ∈ E on

a X2 = A⇔


f (x,y,z)2 = 1
g(x,y,z)2 = j
h(x,y,z)2 = j2

⇔


f (x,y,z) =±1
g(x,y,z) =±e

iπ
3

h(x,y,z) =±e
2iπ
3

⇔ X = Pdiag(1,±e
iπ
3 ,±e

2iπ
3 )P−1
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