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Correction du DS n◦4.

Durée : 4 heures

Question de cours

Rappeler la définition de "suites adjacentes" et prouver le théorème des suites adjacentes
u et s sont dites adjacentes si elles sont de monotonies contraires et que leur diférence converge vers 0.

Théorème : si deux suites sont adjacentes, elles sont convergentes et ont la même limite.
Preuve : quitte à les intervertir, u est croissante et v est décroissante. Donc −v est croissante et donc en tant que somme de
suites croissantes u− v est croissante. Comme u− v converge vers 0 et qu’elle est croissante, on en déduit que 0 est sa borne
supérieure, donc pour tout entier n ,un− vn ≤ 0 ainsi, un ≤ vn ≤ v0 puisque v décroît. Et donc u est croissante majorée, donc
converge ; on note ` sa limite. Comme v = u+(v−u) est la somme de u qui converge vers ` et de v−u qui converge vers 0,
on obtient que v converge aussi ver `.

Exercice 1 : divers

1. Soit u la suite définie pour tout entier n par


u0 = 4
u1 =−1
∀n ∈N , un+2 = 7un+1−10un.

.

On résout l’EC X2−7X +10 = 0 il y a deux solutions : 2 et 5. Il existe deux constantes A et B tel que pour tout entier

n on ait un = A2n +B5n. Pour trouver ces constantes on a

®
A+B = 4
2A+5B =−1

L2 <−−L2−2L1
⇔

®
A+B = 4
3B =−9

⇔®
A = 7
B =−3

Donc pour tout entier n on a un = 7×2n−3×5n

2. Soit

A =

ß
(−1)n +

1
n+1

,n ∈N
™

Pour tout entier n on a −1 ≤ (−1)n + 1
n+1 ≤ 1+ 1

1 = 2 donc A est borné, et pour n = 0 on a (−1)0 + 1
1+0 = 2 donc

A 6= /0. A est bornée, non vide, donc admet une borne supérieure et inférieure. De plus, 2 est un majorant qui appartient
à A donc c’est un maximum.
Montrons que −1 est la borne inférieure : c’est déjà un minorant, il suffit d’exhiber une suite d’élément de A qui
converge vers −1, comme

Ä
(−1)2n+1 + 1

2n+1+1

ä
n∈N

c’est bien une suite de AN et elle converge vers −1. −1 est donc
la borne inférieure, mais ne fait pas partie de A puisque tout élément de A est en fait strictement supérieur à −1 : c’est
donc un infimum mais pas un minimum.

3. Determiner la limite quand n tend vers +∞ de
√

1−cos( 5
n )

ln(1+ 2√
n )
»

sin( 3
n+1 )

On 5
n →n→∞

0 donc 1− cos(5
n) ∼n→+∞

52

2n2 et donc
»

1− cos(5
n) ∼n→+∞

5√
2n

De plus 2√
n →n→∞

0 donc ln(1+ 2√
n) ∼n→+∞

2√
n et

3
n+1 →n→∞

0 donc sin( 3
n+1) ∼n→+∞

3
n+1 ∼

n→+∞

3
n comme cet équivalent est positif, sin( 3

n+1) est positif à partir d’un certain

rang et l’on a
»

sin( 3
n+1) ∼n→+∞

√
3√
n

Ainsi
√

1−cos( 5
n )

ln(1+ 2√
n )
»

sin( 3
n+1 )

∼
n→+∞

5√
2n

2√
n×
√

3√
n

= 5√
6
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Ainsi, on peut dire que
√

1−cos( 5
n )

ln(1+ 2√
n )
»

sin( 3
n+1 )

→
n→+∞

5√
6

4. Soit n ∈N∗.

(a) Par récurrence sur n ∈ N∗.
Pour n = 1,a1 = 2 et b1 = 1 conviennent. Supposons la propriété établie au rang n > 1.

(2+
√

3)n+1 = (2+
√

3)
Ä

an +bn
√

3
ä
= an+1 +bn+1

√
3

avec an+1 = 2an +3bn et bn+1 = an +2bn de sorte que

3b2
n+1−a2

n+1 =−a2
n +3b2

n =−1

Récurrence établie.

(b) an−1 6 bn
√

3 < an donc 2an−1 6 (2+
√

3)n < 2an doncö
(2+
√

3)n
ù
= 2an−1

C’est un entier impair.

Exercice 2 : Résolution d’une EDL2 par changement de variable

On cherche à résoudre sur R∗+ l’équation différentielle :

x2y”−3xy′+4y = 0. (E)

1. Il s’agit d’une équation différentielle linéaire d’ordre 2, mais à coefficients non constants.

2. Analyse. Soit y une solution de (E) sur R∗+. Pour t ∈ R, on pose z(t) = y(et).

(a) En tant que composée de fonction deux fois dérivables (et exp étant à valeurs dans R+∗ qui est le domaine de
définition de y) z est dérivable surR et l’on a pour tout réel t

• z′(t) = ety′(et)

• z′′(t) = ety′(et)+ e2ty′′(et) = (et)2y′′(et)+ ety′(et).

On a donc pour tout réel t , en posant x = et

z′′(t)−4z′(t)+4z(t)= (et)2y′′(et)+ety′(et)−4ety′(et)+4y(et)= x2y′′(x)−3xy′(x)+4y(x)= 0 donc z est solution
de l’EDL à coefficients constants

z′′−4z′+4z = 0

(b) On résout l’équation caractéristique associée : X2−4X +4 = 0⇔ (X−2)2 = 0 il s’agit donc d’une unique racine
double, valant 2.
On en déduit qu’il existe deux constantes (A,B) ∈R2 telles que pour tout réel t on ait

z(t) = (At +B)e2t

Pour x ∈R+∗, ln(x) est bien défini et l’on peut donc utiliser cette expression pour t = ln(x) : on a alors z(ln(x)) =
(A ln(x)+B)e2ln(x) = (A ln(x)+B)x2 or z(ln(x)) = y(x)

3. Synthèse.

Soit A et B deux réels. On considère la fonction y :
ß
R

+∗ → R

x 7→ (A ln(x)+B)x2 Alors pour tout x ∈ R+∗ on a

y′(x) = A
x x2 +2(A ln(x)+B)x = x(2A ln(x)+A+2B) et y′′(x) = (2A ln(x)+A+2B)+ x(2A

x ) = 2A ln(x)+3A+2B
On a donc
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x2y′′(x)−3xy′(x)+4y(x) = x2(2A ln(x)+3A+2B)−3x2(2A ln(x)+A+2B)+4(A ln(x)+B)x2

ce qui donne x2y′′(x)−3xy′(x)+4y(x) = x2 (2A ln(x)+3A+2B−6A ln(x)−3A−6B+4A ln(x)+4B) = 0 Ainsi y est
solution.
Conclusion l’ensemble des solutions est

S =

ß
y :
ß
R

+∗ → R

x 7→ (A ln(x)+B)x2 , (A,B) ∈R2
™
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Problème 1 : à propos des équations différentielles d’ordre 3.

A. Généralités.

1. Par définition, d(x) = f (3) + a f ′′ + b f ′ + c f , donc y est solution de (E) si et seulement si y(3) + ay′′ + by′ + cy =
f (3)+ a f ′′+ b f ′+ c f , soit (y− f )(3)+ a(y− f )′′+ b(y− f )′+ c(y− f ) = 0, c’est-à- dire si et seulement si y− f est
solution de (H).

2. Supposons donc yp(x) = Aekx, alors y′p(x) = kAekx,y′′p(x) = k2Aekx et y(3)p (x) = k3Aekx. La fonction yp est donc solution
de ( E ) (après simplification par les exponentielles) si et seulement si A

(
k3 +ak2 +bk+ c

)
= 1. Si k est solution de

l’équation caractéristique, cette équation n’a manifestement pas de solution, mais dans le cas contraire, il suffit de poser
A = 1

k3+ak2+bk+c pour obtenir une solution de (E).

3. On doit avoir r3 + ar2 + br+ c = (r− k)3 = r3− 3r2k+ 3rk2− k3. Par identification des coefficients, a = −3k, donc
6k+2a = 2(a+3k) = 0, puis 3k2 = b, donc 3k2 +2ak+b = 3k2−6k2 +3k = 2 = 0, et enfin c =−k3, donc k3 +ak2 +
bk+ c = k3− 3k3 +3k2− k3 = 0 (cette dernière égalité était de toute façon triviale puisqu’elle indique juste que k est
racine de l’équation caractéristique).

4. Posons donc yp(x) = Ax3ekx, alors y′p(x) =
(
kAx3 +3Ax2)ekx,y′′p(x) =

(
k2Ax3 +6kAx2 +6Ax

)
ekx et

y(3)p (x) =
(
k3Ax3 +9k2Ax2 +18kAx+6A

)
ekx. La fonction yp est donc solution de (E) (toujours en se débarassant

des exponentielles) si k3Ax3 + 9k2Ax2 + 18kAx + 6A + ak2Ax3 + 6akAx2 + 6aAx + bkAx3 + 3bAx2 + cAx3 = 1, soit
A
(
k3 +ak2 +bk+ c

)
x3 +A

(
9k2 +6ak+3b

)
x2 +A(18k + 6a)x+ 6A = 1. D’après la question précédente, les coef-

ficients devant x3, devant x2 et devant x s’annulent (ce sont ceux qu’on a calculés à un facteur près) et il ne reste donc
que la condition 6 A = 1 à vérifier. Autrement dit, yp : x 7→ 1

6 x3ekx est solution particulière de (E).

5. Supposons donc que y(3)1 + ay′′1 + by′1 + cy1 = d1(x), et que y(3)2 + ay′′2 + by′2 + cy2 = d2(x), alors il suffit d’additionner
les deux équations et d’appliquer la linéarité de la dérivation pour obtenir (y1 + y2)

(3) + a(y1 + y2)
′′+ b(y1 + y2)

′+
c(y1 + y2) = d1(x)+d2(x), ce qui est exactement l’énoncé du principe de superposition.

B. Un cas particulier.

1. Posons donc y(x) = e−2x cos(x), alors y′(x) = −2e−2x cos(x)− e−2x sin(x) = (−2cos(x)− sin(x))e−2x, puis y′′(x) =
(4cos(x)+2sin(x))e−2x +(2sin(x)− cos(x))e−2x = (3cos(x)+4sin(x)), et enfin
y(3)(x) = (−6cos(x)−8sin(x))e−2x+(−3sin(x)+4cos(x))e−2x = (−2cos(x)−11sin(x))e−2x. On remplace tout dans
le membre de gauche de l’équation : y(3)(x) + 5y′′(x) + 9y′(x) + 5y(x) = e−2x(−2cos(x)− 11sin(x) + 15cos(x) +
20sin(x)−18cos(x)−9sin(x)+5cos(x)) = 0, ce qui prouve que y est solution de ( H1 ).

2. L’équation r3 +5r2 +9r+5 = 0 admet r =−1 comme solution évidente : −1+5−9+5 = 0. On peut donc factoriser
le membre de gauche sous la forme r3 + 5r2 + 9r + 5 = (r + 1)

(
ar2 +br+ c

)
= ar3 +(a+ b)r2 +(b+ c)r + c. Par

identification des coefficients, a = 1, puis a+ b = 5, donc b = 4, et b+ c = 9 donc c = 5, ce qui est cohérent avec
l’équation du coefficient constant. Reste à chercher les racines de r2+4r+5= 0, qui a pour discriminant ∆= 16−20=
−4 et admet donc pour racines r1 =

−4−2i
2 =−2− i et r2 =

−4+2i
2 =−2+ i. Finalement, S = {−1,−2+ i,−2− i}.

3. C’est la même démonstration que pour le deuxième ordre : si y(x) = erx, alors y′(x) = rerx, y′′(x) = r2erx et y(3)(x) =
r3erx, donc la fonction y est solution de (H1) si et seulement si ekx (r3+ 5r2 +9r+5

)
= 0, donc si r est solution de

l’équation caractéristique.

4. Les fonctions x 7→ e−x,x 7→ e−2x+ix et x 7→ e−2x−ix sont donc solutions de ( H1 ). D’après le principe de superposition,
toute addition de deux solutions de ( H1 ) est encore solution de ( H1 ) et de même pour tout multiple d’une solution de (
H1 ) (ça c’est évident, le membre de gauche de l’équation étant simplement multiplié par une constante). En particulier,
x 7→ e−2x+ix+e−2x−ix

2 = e−2x× eix+e−ix

2 = e−2x cos(x) est aussi solution de (H1). De même, x 7→ e−2x+ix−e−2x−ix

2i = e−2x sin(x) est
aussi solution. Toutes les fonctions proposées dans l’énoncé sont donc également solutions de ( H1 ) par superposition.

5. (a) En effet, z′ = y(3)+4y′′+5y′, donc z′+ z = y(3)+5y′′+9y′+5y = 0.

(b) Aucun calcul nécessaire, les solutions sont toutes les fonctions de la forme z : x 7→ Ke−x, avec K ∈ R.
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(c) Il s’agit d’une équation du second ordre à coefficients constants. On a déjà résolution l’équation caractéristique
plus haut, les solutions de l’équation homogène sont donc les fonctions de la forme yh : x 7→ Ae−2x cos(x) +
Be−2x sin(x), avec (A,B) ∈ R2. Reste à trouver une solution particulière de la forme yp(x) = Le−x. On aura alors
y′p(x) =−Le−x, puis y′′p = yp et yp est solution de l’équation si L−4L+5L = λ, soit L = λ

2 . Les solutions de notre
équation sont donc toutes les fonctions de la forme y : x 7→ Acos(x)e−2x+Bsin(x)e−2x+ λ

2 e−x, avec (A,B,λ)∈R3.

(d) Il n’y a en fait presque rien à rédiger : si y est solution de ( H1 ), alors z est solution de z′+ z = 0, donc z =
y′′+ 4y′+ 5y = λe−x pour un certain réel λ. D’après la question précédente, y est alors nécessairement de la
forme x 7→ Acos(x)e−2x +Bsin(x)e−2x + λ

2 e−x, ce qui prouve bien la réciproque souhaitée (il suffit de renommer
les constantes).

6. Avec les notations de la question 4 , on a donc y′(x)=−Ae−x−2Bcos(x)e−2x−Bsin(x)e−2x−2C sin(x)e−2x+C cos(x)e−2x,
puis y′′(x) = Ae−x + 3Bcos(x)e−2x + 4Bsin(x)e−2x − 4C cos(x)e−2x + 3C sin(x)e−2x. Les conditions proposées im-
posent donc A+ B = 2,−A− 2B+C = −2 et A+ 3B− 4C = −2. Pour une fois, on va procéder par substitution
: A = 2− B, donc en remplaçant dans la deuxième équation −B +C = 0, soit C = B. On remplace tout dans la
troisième équation : 2−B+3B−4B = −2, soit −2B = −4, donc B = 2, dont on déduit C = 2 et A = 0. Finalement,
y0(x) = 2(cos(x)+ sin(x))e−2x.

7. La fonction y0 s’annule quand cos(x) + sin(x) = 0, donc si cos(x) = cos
(

π

2 + x
)
. Ceci ne peut se produire que si

x≡−π

2 − x[2π], donc x≡−π

4 [π].

8. Il s’agit d’une fonction sinusoïdale pondérée par une exponentielle décroissante, on a déjà croisé ce type de courbes en
cours. Ici, le problème si on essaie vraiment de tracer correctement la courbe est que l’exponentielle tend trop vite vers
0 , ce qui «écrase» très rapidement les variations périodiques. En pratique, à une échelle raisonnable, on ne voit rien
(en pointillés rouges, les deux exponentielles opposées qui encadrent la courbe de la fonction y0 ) :

9. On connait déjà les solutions de l’équation homogène, il ne reste plus qu’à trouver une solution particulière. On va
pour cela procéder par superposition (en écrivant 34ch(2x) = 17e2x + 17e−2x ): cherchons d’abord une solution y1
de l’équation y(3)+5y′′+9y′+5y = 17e2x sous la forme y1(x) = Ke2x. On aura alors y′1(x) = 2Ke2x,y′′1(x) = 4Ke2x et
y(3)1 (x) = 8Ke2x, donc y1 convient si 8K+20K+18K+5K = 17, soit K = 17

51 =
1
3 . De même, on cherche une solution y2

de l’équation y(3)+5y′′+9y′+5y = 17e−2x sous la forme y2(x) = Le2x. On aura alors y′2(x) =−2Le2x, y′′2(x) = 4Le2x

et y(3)2 (x) = −8Le2x, donc y2 convient si −8L+ 20L− 18L+ 5L = 17, soit L = −17. Par superposition, la fonction
yp : x 7→ 1

3 e2x +17e−2x est donc solution particulière de notre équation, dont toutes les solutions sont les fonctions de la
forme x 7→ Ae−x +Bcos(x)e−2x +C sin(x)e−2x + 1

3 e2x +17e−2x.
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Problème 2 : Des suites

1. On désigne par (Cn)n∈N la suite de réels définie par la relation de récurrence
(A)

∀n ∈N Cn+1 =

…
1+Cn

2

et la donnée de sont premier terme C0 où C0 ∈ [1,+∞[.

(a) La fonction f est définie sur [−1,+∞[ croissante sur [−1,+∞[ comme composée donc pour tout x ∈ [1,+∞[, on a
f (x)> f (1) = 1. Et pour tout x ∈ [1,+∞[, on a

f (x)6 x⇐⇒
…

1+ x
2

6 x

⇐⇒ 1+ x
2

6 x2

⇐⇒ 2x2− x−1 > 0,

carx ∈R+

or x > 1 donc x2 > x, donc 2x2− x−1 > x−1 > 0 et donc f (x)6 x.
On a donc bien

∀x ∈ [1,+∞[ 1 6 f (x)6 x

(b) Pour tout x ∈ [1,+∞[, on a f (x)> 1 donc f (x) ∈ [1,+∞[. Donc [1,+∞[ est stable par f .

(c) L’intervalle [1,+∞ [ est stable par f et C0 ∈ [1,+∞ [ . Donc la suite (Cn)n∈N est correctement définie surN et l’on
a

∀n ∈N,Cn ∈ [1,+∞[

(d) Puisque f (1) = 1, si C0 = 1, alors par récurrence immédiate : ∀n ∈N,Cn = 1.

(e) Pour tout entier naturel n, on a Cn ∈ [1,+∞[ donc

1 6 f (Cn)6Cn

et donc Cn+1 6Cn. Donc (Cn)n∈N est décroissante.
Donc la suite (Cn)n∈N est décroissante et minorée par 1. D’après le théorème de la limite monotone, (Cn)n∈N
converge de limite ` ∈ [1,+∞[. f étant continue sur [−1,+∞[, f est continue en ` et donc

Cn+1 = f (Cn) −→
n→+∞

f (`).

Or, Cn+1 −→
n→+∞

` donc par unicité de la limite, f (`) = `. Par ailleurs,
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f (`) = ` ⇐⇒
»

`+1
2 = `

⇐⇒ `+1
2 = `2

⇐⇒ 2`2− `−1 = 0
⇐⇒ `= 1 ou `=−1

4
⇐⇒ `= 1 car` ∈R+

⇐⇒ `= 1

Donc `= 1. Finalement, la suite (Cn)n∈N converge vers 1.

2. On définit deux suites (an)n∈N et (bn)n∈N de réels strictement positifs par les relations de récurrence

∀n ∈N
ß

an+1 =
1
2 (an +bn)

bn+1 =
√

an+1bn
(B)

et la donnée de (a0,b0) ∈]0,+∞
[2 .

(a) Montrons par récurrence que pour tout entier naturel n,an et bn existent et sont (strictement) positifs.

• a0 et b0 existent et sont strictement positifs.
• Soit n ∈N tel que an et bn existent et sont strictement positifs.

On peut définir an+1 =
an+bn

2 et an+1 est strictement positif car an et bn le sont.
On a alors an+1bn > 0 donc bn+1 =

√
an+1bn existe et est strictement positif.

Ainsi, les suites (an)n∈N et (bn)n∈N sont correctement définies surN et qu’elles sont strictement positives.

(b) On a

∀n ∈N an = bn =⇒ an+1 = bn+1 = an = bn

Donc par récurrence immédiate, si a0 = b0, alors les suites (an)n∈N et (bn)n∈N sont constantes à a0 (= b0).
Dans la suite on supposera que a0 < b0.

(c) • Montrons par récurrence que pour entier naturel n, on a an < bn.
• On a bien a0 < b0 par hypothèse.
• Soit n ∈N tel que an < bn. On a

bn+1−an+1 =
√

an+1bn−an+1 =
√

an+1

Ä√
bn−
√

an

ä
> 0

car √ est strictement croissante surR+,bn > an et car an+1 > 0. Donc an+1 < bn+1.
Ainsi, pour entier naturel n, on a an < bn.

• Pour tout entier naturel n, on a bn > an donc

an+1 =
an +bn

2
>

an +an

2
= an

et bn+1 =
√

an+1bn,an+1 < bn+1 et bn > 0 donc

b2
n+1 = an+1bn < bn+1bn

et puisque bn+1 > 0, il vient bn+1 < bn.
Par conséquent, les suites (an)n∈N et (bn)n∈N sont respectivement strictement croissantes et décroissantes.

• D’après les deux points précédents, on a
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∀n ∈N 0 < a0 < an < bn < b0.

Donc la suite (an)n∈N est croissante et majorée par b0 et la suite (bn)n∈N est décroissante et minorée par a0.
D’après le théorème de la limite monotone, ces deux suites convergent. Notons `a et `b leurs limites respectives.
On a

an+1 =
an +bn

2
−→

n→+∞

`a + `b

2

et an+1 −−−−→
n→+∞

`a donc par unicité de la limite,

`a + `b

2
= `a

et ainsi, `a = `b. Enfin, on a

0 < a0 6 `a = `b 6 b0

donc cette limite commune est strictement positive.

(d) La suite (an)n∈N est décroissante, la suite (bn)n∈N est croissante et

bn−an −→
n→+∞

`b− `a = 0.

Les suites (an)n∈N et (bn)n∈N sont donc adjacentes.

Pour tout entier naturel n, on a

bnγn+1 = bn×
an+1

bn+1
= bn×

an+1√
an+1bn

=
√

an+1bn = bn+1

donc

γn+1 =
bn+1

bn
=

√
an+1bn

bn
=

»
an+bn

2√
bn

=

 
an
bn
+1

2
=

…
γn +1

2
.

Donc la suite (γn)n∈N vérifie bien la relation (A).

3.4. (a) On a γ0 =
a0
b0
∈
ó

0,1 [car0 < a0 < b0 . Or, la fonction cos induit une bijection (strictement décroissante) de ]0, π

2 [

sur ]0,1[ donc il existe un unique α ∈]0, π

2 [ tel que γ0 = cos(α).
Remarque −α = Arccos (γ0).

(b) Montrons par récurrence que pour tout entier naturel n, on a

P(n) γn = cos
(

α

2n

)
et bn = b0

sin(α)
2n sin

(
α

2n

) .
• On a γ0 = cos(α) = cos

(
α

20

)
et puisque sin(α) 6= 0,

b0 = b0
sin(α)

20 sin
(

α

20

)
Donc P(0) est vraie.
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• Soit n ∈N tel que P(n) soit vraie. On a

γn+1 =

…
γn +1

2
=

 
cos
(

α

2n

)
+1

2
=
∣∣∣cos

(
α

2n+1

)∣∣∣= cos
(

α

2n+1

)
.

En effet, pour tout réel x, on a

cos2(x) =
cos(2x)+1

2

donc  
cos(2x)+1

2
= |cos(x)|.

De plus, α ∈]0, π

2 [ donc α

2n+1 ∈
]

0, π

2 [ et donc cos
(

α

2n+1

)
> 0.

Ensuite,

bn+1 = bnγn+1

= b0
sin(α)

2n sin
(

α

2n

) × cos
(

α

2n+1

)
= b0

sin(α)
2n sin

(
2× α

2n+1

) × cos
(

α

2n+1

)
= b0

sin(α)
2n×2sin

(
α

2n+1

)
cos
(

α

2n+1

) × cos
(

α

2n+1

)
= b0

sin(α)
2n+1 sin

(
α

2n+1

)
Ainsi, on a

∀n ∈N γn = cos
(

α

2n

)
et bn = b0

sin(α)
2n sin

(
α

2n

) .
Enfin, pour tout entier naturel n,

an = bnγn =
b0 sin(α)cos

(
α

2n

)
2n sin

(
α

2n

) .

(c) On sait que

sin(x)
x
−→
x→0

1

car c’est la limite du taux d’accroissement de sin en 0 . Avec α

2n −−−−→
n→+∞

0, on en déduit que

2n sin
(

α

2n

)
= α×

sin
(

α

2n

)
α

2n

−→
n→+∞

α

Ainsi, en utilisant la question précédente, on obtient

an −→
n→+∞

b0 sin(α)
α

et bn −→
n→+∞

b0 sin(α)
α

.

bn+1−an+1 6
1
4
(bn−an) puis bn−an 6

1
4n (b0−a0) .
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• Pour tout entier naturel n, on a

b2
n+1−a2

n+1 = an+1bn−a2
n+1

= an+1 (bn−an+1)

= an+1

Å
bn−

an +bn

2

ã
= an+1×

bn−an

2
=

an+1

2
(bn−an)

et puisque bn+1−an+1 =
b2

n+1−a2
n+1

bn+1+an+1
,

bn+1−an+1 =
an+1

2(an+1 +bn+1)
× (bn−an)6

an+1

2(an+1 +an+1)
× (bn−an) =

1
4
(bn−an)

où l’on a utilisé que an+1 < bn+1.

• Montrons maintenant par récurrence que pour tout entier naturel n,bn−an 6 1
4n (b0−a0).

• On a bien b0−a0 6 1
40 (b0−a0).

• Soit n ∈N tel que ba−an 6 1
4n (b0−a0). On a alors

bn+1−an+1 6
1
4
(bn−an)6

1
4
× 1

4n (b0−a0) =
1

4n+1 (b0−a0) .

Ainsi, pour tout entier naturel n,bn−an 6 1
4n (b0−a0).

5. (a) On a montré que les suites (an)n∈N et (bn)n∈N convergeaient vers b0
sin(α)

α
où α est l’unique élément de ]0, π

2 [ tel

que cos(α) = a0
b0

. Ici, a0
b0

= 1
2 donc α = π

3 ,sin(α) =
√

3
2 et donc

b0
sin(α)

α
=

2
3
√

3
×
√

3/2
π/3

=
1
π
.

Ainsi, les suites (pn)n∈N et (qn)n∈N convergent vers π.

(b) Soit n ∈N.
On a 0 < an < bn donc qn− pn > 0. Ensuite,

qn− pn =
bn−an

anbn
6

b0−a0

4nanbn
6

b0−a0

4na2
0

car a0 < an < bn. D’où

qn− pn 6
b0−a0

4na2
0

=

2
3
√

3
− 1

3
√

3

4n
Ä

1
3
√

3

ä2 =
3
√

3
4n .

Les suites (an)n∈N et (bn)n∈N étant adjacentes de limite 1
π

, on a

0 < an 6
1
π
6 bn

d’où

pn 6 π 6 qn
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puis

0 6 π− pn 6 qn− pn 6
3
√

3
4n

(c) Pour tout entier naturel n, pn approche π avec une erreur 6 3
√

3
4n et par stricte croissance de ln,

3
√

3
4n 6 10−8⇐⇒ 3

2
ln(3)−2n ln(2)6−8ln(10)

⇐⇒ n >
3
2 ln(3)+8ln(10)

2ln(2)
⇐⇒ n > n0

avec n0 =
⌈ 3

2 ln(3)+8ln(10)
2ln(2)

⌉
.

(d) def EstimationPi(eps):
a,b = 3**(-3/2),2*3**(-3/2)
while 1/a-1/b > eps:
a = (a+b)/2
b = (a*b)**(1/2)
return 1/2*(1/a+1/b)
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